Instructions: You must show all necessary work to get full or partial credits. You can use a 3×5 index card. You can not use your book, cell phone, computer, or other notes. Read all problems through once carefully before beginning work.

Notation: \mathbb{R}^{n} denotes the standard Euclidean space with $|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} . \Delta u(x)=\sum_{j=1}^{n} \frac{\partial^{2} u}{\partial x_{j} \partial x_{j}}$ stands for the Laplace operator in \mathbb{R}^{n}. Ω is used for any open, bounded, and smooth domain in \mathbb{R}^{n} with $\partial \Omega$ as its boundary, and $\nu(x)$ is the unit out normal at $x \in \partial \Omega . \omega_{n}$ is the surface area for $S^{n-1}=\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}$.

Problem 1 Use the method of characteristics to find a solution $u(x, t)$ to the Burger's equation

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0, \quad x \in \mathbb{R}, t \geq 0 \\
u(x, 0)=x
\end{array}\right.
$$

near the initial surface $t=0$. Verify your answer by a direct differentiation.

Problem 2 Let u be a non-constant harmonic function in \mathbb{R}^{n} (i.e., $\triangle u=0$). Let $B(r)$ be the solid ball of radius r centered at the origin in \mathbb{R}^{n} and $\Omega(r)$ be the boundary of $B(r)$. That is,

$$
B(r)=\left\{x \in \mathbb{R}^{n}| | x \mid \leq r\right\}, \quad \Omega(r)=\left\{x \in \mathbb{R}^{n}| | x \mid=r\right\}
$$

(a) Prove that $g_{1}(r)=\int_{\Omega(1)} u(r y) d S_{y}$ is independent of r for $r \geq 0$.
(b) Prove that $g_{\infty}(r)=\sup _{y \in \Omega(1)}|u(r y)|$ is a strictly increasing function of r for $r \geq 0$, and $\lim _{r \rightarrow \infty} g_{\infty}(r)=\infty$.
(c) Prove that $g_{2}(r)=\int_{\Omega(1)}|u|^{2}(r y) d S_{y}$ is a strictly increasing function of r for $r \geq 0$.
(d) Can you find a number $r_{0}>0$ such that $\frac{\partial u(x)}{\partial \nu}=0$ for all $x \in \Omega\left(r_{0}\right)$? Briefly explain your answer.

Problem 3 Consider the following initial value problem for the heat equation in $\mathbb{R}^{1} \times$ $[0, \infty)$

$$
u_{t}(x, t)=u_{x x}(x, t), \quad u(x, 0)=\frac{1+\sin ^{2} x}{1+x^{2}} .
$$

(a) Prove that there is one and only one solution such that $0<u<1$ for all $x \in \mathbb{R}$ and $t>0$. For this particular solution, prove that $h(t)=\int_{\mathbb{R}} u(x, t) d x \equiv c_{0}>0$. Don't try to find the explicit formula for $u(x, t)$!
(b) Is it possible to find another solution $u(x, t)$ to the given initial value problem such that $u(0,2)=-1$? Explain your answer.
(c) Prove that the solution u in (a) satisfies the estimate $u(x, t) \geq v(x, t)$ for all $x \in[0,1]$ and $t \geq 0$, where $v(x, t)$ is the solution of the following initial and boundary value problem

$$
v_{t}(x, t)=v_{x x}(x, t), \quad v(x, 0)=\frac{4 x(1-x)}{1+x^{2}}, v(0, t)=v(1, t)=0
$$

Problem 4 Consider the initial value problem for the wave equation in $R^{3} \times R$

$$
\begin{cases}u_{t t}=u_{x x}+u_{y y}+u_{z z}, & (x, y, z) \in \mathbb{R}^{3}, t \in \mathbb{R} \\ u(x, y, z, 0)=0, & (x, y, z) \in \mathbb{R}^{3} \\ u_{t}(x, y, z, 0)=\frac{1}{\left(1+x^{2}+y^{2}+z^{2}\right)^{2}} & (x, y, z) \in \mathbb{R}^{3} .\end{cases}
$$

(a) If u is a solution to the initial value problem, find an explicit formula for $u(0,0,0, t)$.
(b) Find a solution of the form $u(x, y, z, t)=V(r, t)$ with $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
[Hint: Note that $W(r, t)=r V(r, t)$ satisfies $\left.\left.W_{r r}=W_{t t}\right).\right]$
(c) Check that $V(0, t)=u(0,0,0, t)$ you obtained from Parts (a) and (b).
(d) Can you find a solution $u(x, t)$ such that $u(-1,0,0,2)-u(1,0,0,2)=1$? Explain your answer.

Problem 5 Let $B(0, r)$ be the closed ball in $\mathbb{R}^{n}(n \geq 2)$ of radius r centered at the origin. Assume that $u(x)$ is a harmonic function on $B(0, r)$.
(a) What is the Poisson's formula for $u(x)$?
(b) Use this Poisson's formula for balls to prove

$$
r^{n-2} \frac{r-|x|}{(r+|x|)^{n-1}} u(0) \leq u(x) \leq r^{n-2} \frac{r+|x|}{(r-|x|)^{n-1}} u(0),|x|<r
$$

if u is nonnegative on $B(0, r)$
(c) Show that any harmonic function on whole \mathbb{R}^{n} that is bounded above (or bounded below) must be a constant. (Note that it is different form the Liouville's theorem.)

Problem 6 Consider the following so-called sine-Gordon equation, which appears in differential geometry and relativistic field theory, with initial and boundary data

$$
\begin{cases}u_{t t}=\Delta u-\sin u, & x \in \Omega, t>0 \\ u(x, 0)=g(x), & x \in \Omega \\ u_{t}(x, 0)=h(x), & x \in \Omega \\ u(x, t)=0, & x \in \partial \Omega, t>0\end{cases}
$$

(a) Set $E(t)=\int_{\Omega}\left[u_{t}^{2}+|D u|^{2}+u^{2}\right] d x$. Prove that $E^{\prime}(t) \leq 2 E(t), t \geq 0$.
(b) Prove that the solution to the original problem is unique.

